

Flood Risk Assessments and Sustainable Drainage Strategy For the Proposed Development of 60 Dwellings on Land Southeast of 208 Coates Road, Coates

Contents

- 1 Introduction
- 2 Site Description
- 3 The Proposed Development and Sustainable Drainage Strategy
- 4 Conclusion

Appendices

- 1 Site Location
- 2 Environment Agency Flood Map
- 3 Proposed Development Layout
- 4 Impermeable Areas Plan
- 5 Indicative Drainage Layout
- 6 Micro Drainage Calculations: Permeable Paving System
- 7 Micro Drainage Calculations: Infiltration Basin System
- 8 Site Survey

1889 - Rev A - FRA - DS - May 2017

Flood Risk Assessment and Sustainable Drainage Strategy For the Proposed Development of 60 Dwellings on Land Southeast of 208 Coates Road, Coates

1 Introduction

- 1.1 MTC Engineering (Cambridge) Limited has been asked to provide a Flood Risk Assessment and Sustainable Drainage Strategy in relation to the proposed development of 60 residential dwellings on behalf of Swann Edwards Architecture Limited.
- 1.2 This Flood Risk Assessment is based on the following information:-
- 1.3 Site Survey provided by Ratcliff Land & Engineering Surveys Ltd.
- 1.4 Site Layout Provided by Swann Edwards Architecture limited;
- 1.5 Environment Agency Flooding Information
- 1.6 Cambridgeshire County Council Surface Water Guidance;
- 1.7 British Geological Survey Mapping.

- 1.8 The comments and opinions contained in this report including any conclusions are based on the information available to MTC Engineering (Cambridge) Ltd. during our investigations. The conclusions drawn could therefore differ if the information is found to be inaccurate, incomplete or misleading. MTC Engineering (Cambridge) Ltd. accept no liability should this prove to be the case, nor if additional information exists or becomes available with respect to this site.
- 1.9 MTC Engineering (Cambridge) Ltd. makes no representation whatsoever concerning the legal significance of its findings or any other matters referred to in the following report. Except as otherwise requested by the client, MTC Engineering (Cambridge) Ltd. are not obliged and disclaim any obligation to update the report for events taking place after the Assessment was undertaken.
- 1.10 This report is a Sustainable Drainage Strategy relating to flooding and drainage issues associated with the proposed development. The information presented and conclusions drawn are based on statistical data and are for guidance purposes only. This report provides no guarantee against flooding of the study site or elsewhere, nor as to the absolute accuracy of water levels, flow rates and associated probabilities quoted.

2

2 Site Description

- 2.1 The site lies on the southern side of Coates Road (A605), Coates and occupies an area of approximately 2.7Ha. A site location plan is provided in Appendix 1.
- 2.2 To the north the site is bound by existing residential development fronting Coates Road running in a northeasterly direction, then further residential development then open agricultural land.
- 2.3 To the south the site is bound by open agricultural land, then a drain running in a southeasterly direction, to join a network of drains running through open agricultural land further south.
- 2.4 The west of the site is bound by an area of trees and shrubs then residential development fronting Coates Road, then open agricultural fields.
- 2.5 To the east the site is bound by agricultural land then then residential development forming Coates Village.
- 2.6 The majority of the site is greenfield, however occupies two buildings and concrete hard standing area forming an access to the rear of 206 and 208 Coates Road at the most north western corner of the site.
- 2.7 The site is at approximately 4.6 metres above Ordnance Datum (AOD) falling in a south easterly direction to levels of approximately 4.3m AOD.
- 2.8 There are no surface water features in the vicinity of the site.
- 2.9 British Geological Survey Mapping indicates that the bedrock geology underlying the site is the Oxford Clay Formation, with superficial deposits of sand and gravel.
- 2.10 The geology is generally of a reasonably permeability, however infiltration testing has yet to be carried out to determine infiltration rates at the site. This will be carried out in

accordance with CIRIA report 156 once conditional planning permission has been granted and the full detailed design is carried out.

3 Sources of Potential Flood Risk

- 3.1 In accordance with The National Planning Policy Framework all forms of flood risk need to be considered in relation to any development.
- 3.2 The first form of flood risk to be considered in respect of The National Planning Policy Framework if fluvial flooding.
- 3.3 The Environment Agency Indicative Flood Map for Planning (Appendix 2) shows the sites lies completely in Flood Zone 1, thus at low risk of fluvial flooding (less than 1 in 1000), with no land at a greater risk of flooding in close proximity of the site.
- 3.4 The overall fluvial flood risk to the site is considered low.
- 3.5 The second source of flood risk to be considered in accordance with The National Planning Policy Framework is flooding from the sea.
- 3.6 The site is located a significant distance in land from the sea and at levels in excess of4.5m AOD it is not considered to be at any significant risk of flooding from the sea.
- 3.7 The overall risk of flooding from the sea is therefore considered low.
- 3.8 The third form of flood risk to be considered in respect of The National Planning Policy Framework is flooding from land.
- 3.9 Intense rainfall, often of short duration, that is unable to soak into the ground or enter drainage systems can quickly run off land and result in local flooding. In developed areas, this flood water can be polluted with domestic sewage with foul sewer surcharge and overflow. Local topography and built form can have a strong influence on the direction and depth of flow. The design of development down to a micro level can influence or exacerbate this. Overland flow paths need to be taken into account in development to minimise the risk of flooding from overland flow.

- 3.10 Land in the vicinity of the site is generally flat and is largely open agricultural land where significant flows are unlikely to develop, whilst land to the south and east is lower than the site itself thus overland flows would not come onto the site from these directions.
- 3.11 Any flows coming south or east towards the site would simply be picked up by Coates Road and channeled in a southeasterly direction along adjacent roads whilst any flows from the west would be picked up by the network of drains to the south of the site without having any significant impact upon the site, as illustrated on the Environment Agency Surface Water Flood Map.
- 3.12 The fourth form of flood risk to be considered in accordance with The National Planning Policy Framework is flooding from rising groundwater.
- 3.13 Groundwater flooding occurs when water levels in the ground rise above surface elevations. It is most likely to occur in low lying areas underlain by permeable rocks (aquifers). These may be extensive, regional aquifers, such as chalk or sandstone, or may be localised sands and river gravels in valley bottoms underlain by less permeable rocks. Water levels below the ground rise during wet winter months, and fall again in the summer as water flows out into rivers. In very wet winters, rising water levels may lead to the flooding of normally dry land.
- 3.14 British Geological Survey Mapping indicates that the underlying geology of the site is the Oxford Clay Formation with superficial deposits of sand and gravel.
- 3.15 The underlying clay geology would not have a water table present, though the overlying sand and gravel may have ground water present. However there is a significant area of lower lying land to the south of the site, and it is likely that any outflow in groundwater would either result in the development of spring lines in these lower lying areas or direct outflow to the network of drainage features such as ditches before surface ground levels were reached.

- 3.16 The over risk of the site flooding due to rising ground water levels is considered to be low.
- 3.17 The fifth form of flood risk to be considered in accordance with the National Planning Policy Framework is the risk of flooding from blocked, overloaded, or burst sewers and water mains.
- 3.18 Should a sewer or water main block, burst or become overloaded on Coates Road the road is at a lower level than kerb levels and as such it is anticipated flows would be channeled along Coates Road without having any impact upon the site.
- 3.19 The last form of flood risk to be considered in accordance with the National Planning Policy Framework is flooding from reservoirs, canals or other artificial sources.

7

There are no reservoirs, canals or other artificial structures in the vicinity of the site that are considered to provide any significant risk of flooding to the site.

4 The Proposed Development and Drainage Strategy

- 4.1 The proposal involves the development of 60 residential dwellings with associated access and parking areas off Coates Road, Coates as indicated on the site layout provided in (Appendix 3).
- 4.2 As detailed in Section 3, the site is at a low risk of flooding by any means, thus it is not considered that either setting of minimum floor levels on flood related grounds or the specification of flood resistant or resilient construction measures is required.
- 4.3 General good practice should be however followed with finished external levels designed to assure flow paths are available between buildings with finished floor levels set sufficiently above adjacent ground levels in order that water will not pond in the vicinity of access points and enter the building under any circumstances.
- 4.4 The drainage areas based on the current layout are shown in the impermeable area plan provided in Appendix 4 and are as follows;
 - Dwelling Roof Area: 5720m²
 - Private Drive/ Parking Area: 2850m²
 - Adoptable Highway Access Area: 5240m²
- 4.5 To deal with surface water runoff from these areas the Sustainable Drainage Strategy has been developed in compliance with current relevant local and national guidance.

4.6 **Proposed Point of Discharge and Rates**

3.5.1 In line with the surface water drainage discharge hierarchy the preferable option for discharge of surface water involves discharge into the ground (infiltration). The superficial sand and gravel is likely to be sufficiently permeable that infiltration can be used as a means of drainage.

3.5.2 Infiltration testing in line with CIRIA Report 156 will be carried out once conditional planning approval has been granted to accurately establish infiltration rates at the site upon which the final detailed drainage design will be based on. However for the indicative design, infiltration rates will be based on 10⁻⁵ m/s which is the lowest likely rate for either sand or gravel indicated by CIRIA Project Report 21.

3.6 SuDS Systems Proposed at Development

- 3.6.1 Basins and ponds are a preferred SuDS feature as they are both a flood and pollution reduction measure and also provide a landscape/wildlife benefit. Therefore drainage from the proposed adoptable highway will be constructed to Cambridgeshire County Council specification or similar approved and will drain via road gullies and drainage pipes discharging to an infiltration basin.
- 3.6.2 Permeable paving is a SuDS technique that is appropriate to use at most developments, including the proposed development, and provides both a flood reduction benefit due to the attenuation provided in the base and a pollution reduction benefit due to the filtration of water as it passes through the permeable surfacing.
- 3.6.3 Permeable paving will therefore be used on all private driveway and parking areas occupying a total area of approximately 2850m². The roof areas of the proposed dwellings (5720m²) will be drained directly to the base on the permeable paving.

9

3.7 **Proposed Infiltration Attenuation Volumes**.

- 3.7.1 Based upon the lowest estimated infiltration rate of 10⁻⁵ m/s for underlying sand and gravel indicated by CIRIA Project Report 21, Micro Drainage calculations (Appendix 6) indicate that 370m³ is required to sufficiently attenuate discharge from all roof, and private driveways/parking areas during a 1 in 100 year plus 40% climate change rainfall event whilst infiltration takes place. Assuming a base thickness of 450mm and void ratio of 30% the permeable paving will provide 384m³ of attenuation, which exceeds what is required.
- 3.7.2 Based upon the same infiltration rate the Micro Drainage calculations (Appendix 7) indicate that a volume of 291m³ is required to provide sufficient attenuation for the proposed adoptable highway during a 1 in 100 year plus 40% climate change event whilst infiltration takes place. The infiltration basin proposed on site will provide 340m³ of attenuation assuming a depth of 1m and side slopes of 1:3 which is more than sufficient.

3.8 SuDS Treatment Stages

- 3.8.1 Surface water from all parking/private access areas is to be filtered through permeable paving, this provides a first stage of treatment by filtration through the permeable surfacing which will remove pollutants such as hydrocarbons.
- 3.8.2 A second treatment stage will be provided to discharge from all trafficked areas by filtration through the membrane (such as Terram) in which the storage beneath the permeably paved areas will be wrapped, removing further pollutants from discharge and ensuring that surface water from these areas is suitably treated in line with requirements prior to discharge. Discharge from roof areas will also be filtered through this membrane on entry to the attenuation system.
- 3.8.3 Under SuDS Guidance clean discharge such as that from roofs only requires a single treatment phase prior to discharge, whilst discharge from lightly trafficked areas such

as the proposed parking bays requires two treatment phases.

- 3.8.4 The proposed adoptable highway will be treated through traditional systems such as trapped gullies which will be provided in line with Local Highway Authority Requirements prior to discharge to the pond which will provide an area in which settlement and absorption can take place prior to infiltration.
- 3.8.5 All areas associated with the proposed development will therefore receive adequate treatment prior to discharge in line with SuDS Guidance as detailed above.
- 3.8.6 This Sustainable Drainage Strategy and the calculations provided clearly demonstrate that Sustainable Drainage Systems can be used to successfully drain the proposed development and treat surface water prior to discharge in line with applicable SuDs guidance.

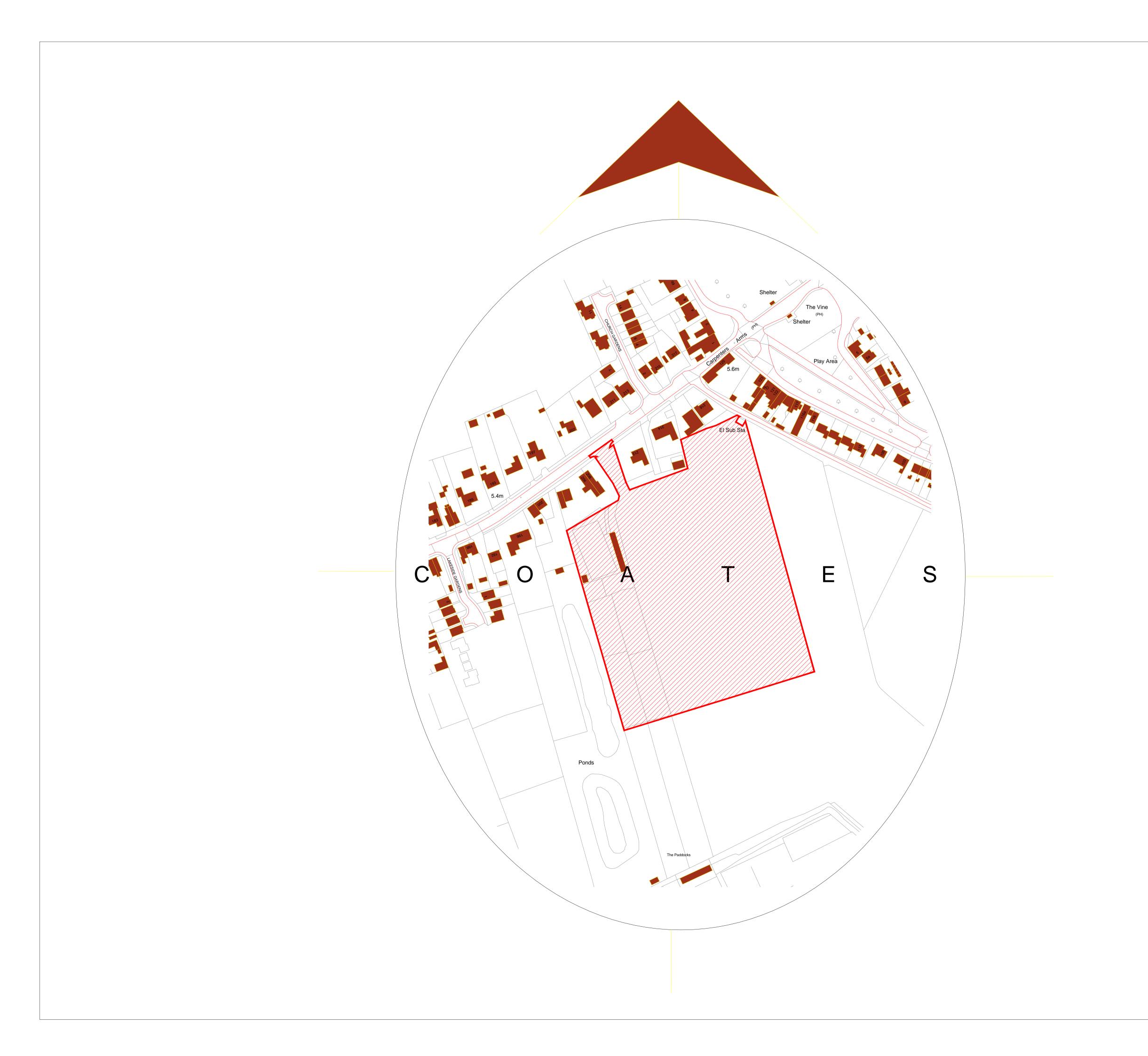
3.9 Maintenance of SuDS Systems

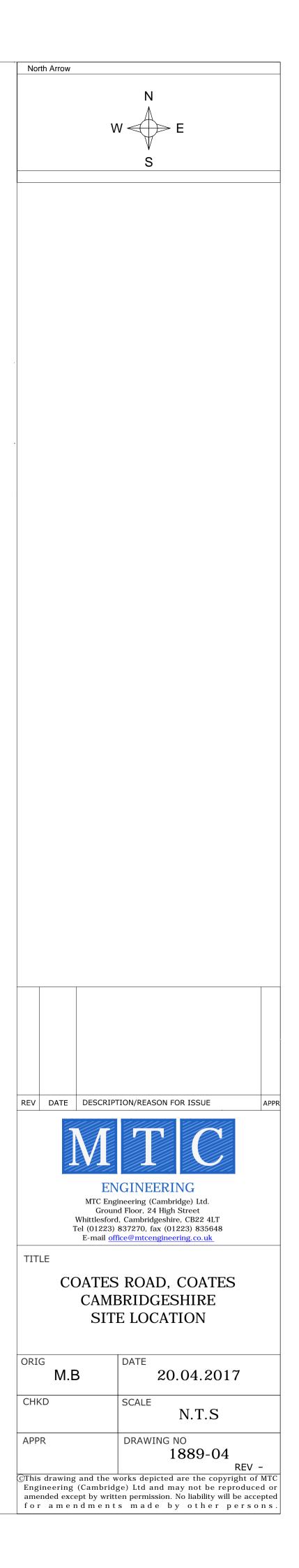
- 3.9.1 Surface water drainage systems for the adoptable highway will be located either in the highway itself or adjacent public open space, and will be adopted by either Cambridge County Council Highways or the Local Water Authority as appropriate.
- 3.9.2 Post development with acceptation to the adoptable highway the drainage systems at the site will be the owner's responsibility to maintain.
- 3.9.3 The owner should ensure that the gullies are clear of debris, such as leaves, through routine maintenance.
- 3.9.4 Removal of silt from the systems which if allowed to develop would reduce the effectiveness of the system. Silt traps will be incorporated into the pipework at the inlet to the block paving sub-base storage and infiltration basin to reduce the risk of clogging from sediments.

- 3.9.5 CCTV inspection at every inspection point after every major storm event at regular intervals. The system will be accessible through a reachable manhole which will enable easy removal of blockages.
- 3.9.6 Regular mowing should take place around the infiltration basin and is required along maintenance access routes and in the main storage area.
- 3.9.7 Adequate access will also be required to assure regular inspections and maintenance.

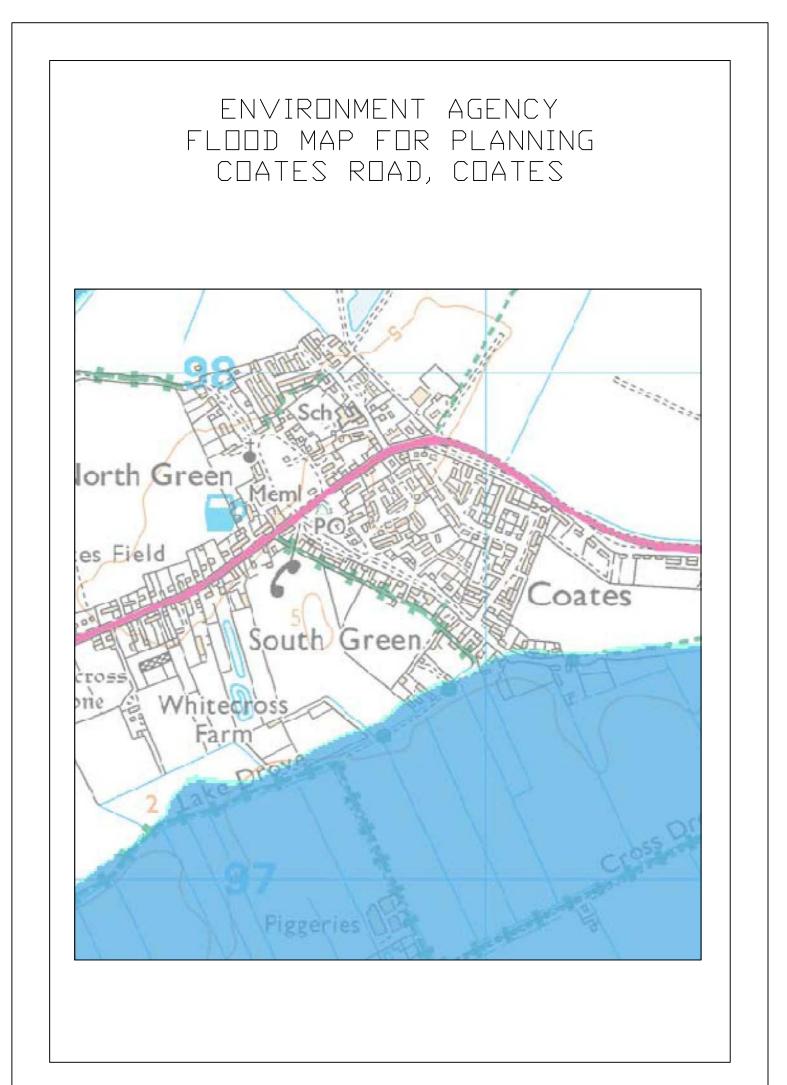
OPERATION & MAINTENANCE ACTIVITY	કા	JDS COMPONEN	NT
REGULAR MAINTENANCE	INFILTRAITON BASIN	POROUS PAVING	INSPECTION CHAMBERS / MANHOLES
INSPECTION	MAYBE REQUIRED	MAYBE REQUIRED	MAYBE REQUIRED
LITTER AND DEBRIS REMOVAL	REQUIRED	MAYBE REQUIRED	MAYBE REQUIRED
GRASS CUTTING	REQUIRED	REQUIRED	
WEED & INVASIVE PLANT CONTROL	REQUIRED	REQUIRED	
SHRUB MANAGEMENT	MAYBE REQUIRED	REQUIRED	
OCCASIONAL MAINTENANCE			
SEDIMENT MANAGEMENT	REQUIRED	MAYBE REQUIRED	MAYBE REQUIRED
VEGETATION MANAGEMENT	REQUIRED		
VACUUM SWEEPING & BRUSHING		MAYBE REQUIRED	MAYBE REQUIRED
REMIEDIAL MAINTENANCE			
STRUCTURE REHABILITATION/REPAIR	REQUIRED	REQUIRED	MAYBE REQUIRED
INFILTRATION SURFACE RECONDITIONING	REQUIRED	REQUIRED	
REPAIR INLETS	REQUIRED		REQURIED
RELEVEL UNEVEN SURFACES	REQUIRED		
REPAIR EROSION	REQUIRED		

- 3.9.8 The detailed drainage design will only be undertaken at the detailed design phase once conditional planning approval has been granted, however this Sustainable Drainage Strategy and the calculations provided clearly demonstrate that Sustainable Drainage Systems can be used at the proposed development to successfully restrict discharge rates in line with the requirements of Cambridgeshire County Council and the Lead Local Flood Authority.
- 3.9.9 It is therefore appropriate to apply a surface water drainage condition to any planning approval granted requiring submission and approval of the detailed surface water drainage design at the conditional discharge stage.

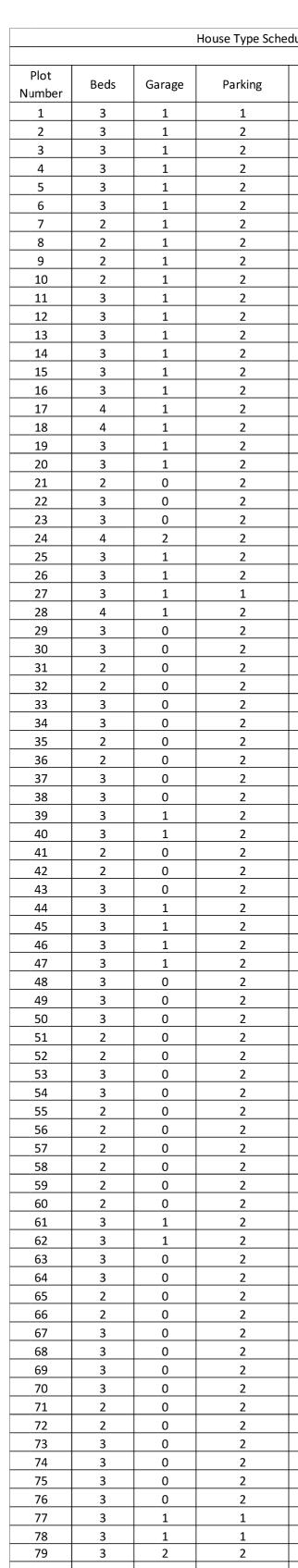

4 Conclusion

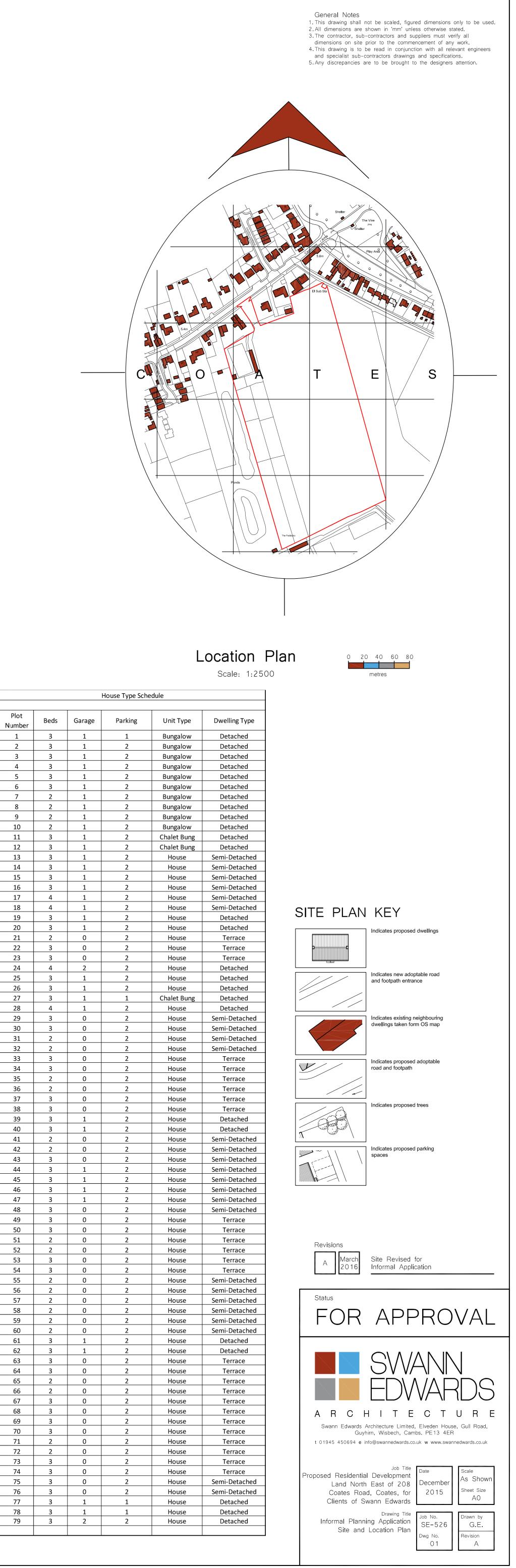

- 4.5 The proposal involves the development of the 60 residential dwellings off Coates Road,Coates as indicated on the site layout provided in Appendix 3.
- 4.6 The area site is approximately 2.7Ha with the proposed impermeable area approximately 1.38Ha.
- 4.7 The site lies in Flood Zone 1 on the Environment Agency Flood Map and as detailed in Section 3 is considered to be at low risk of flooding by any menas. No specific flood resistant or resilient construction methods are required. Good Practice will however be followed when setting floor levels relative the external levels to ensure that ponding of water in the vicinity of access points will not occur under any circumstances.
- 4.8 In line with The National Planning Policy Framework the residential development is considered a 'more vulnerable' development. This type of development is appropriate in Flood Zone 1 without the need to apply the Exception Test, whilst in Flood Zone 1 the Sequential Test is automatically passed.
- 4.9 The site has a superficial layer of sand and gravel and likely to be sufficiently permeable so infiltration can take place. Infiltration testing will be carried out in accordance with CIRIA 154 once conditional planning permission is granted.
- 4.10 Micro Drainage calculations based upon a conservative estimate of the infiltration rate for the underlying geology indicate an attenuation system of 661m³ will successfully drain a 1 in 100 year plus 40% climate change event whilst infiltration takes place.
- 4.11 Full details provided in this report demonstrate that the site can be drained in line with requirements.
- 4.12 Adequate pollution treatment will be provided to all surface water drainage prior to discharge, firstly through filtration via the permeable paving and secondly via filtration

through a membrane such as Terram in which the infiltration/attenuation blankets will be wrapped.


- 4.13 The adoptable highway will be treated in line with Local Highway Authority guidelines.
- 4.14 A detailed maintenance plan will be provided for all drainage systems as part of the detailed design phase.
- 4.15 The Sustainable Drainage Strategy provided successfully demonstrates an available and workable solution for managing surface water in accordance with applicable SuDS guidance, and it is therefore appropriate to apply a surface water drainage condition to any planning approval granted requiring the final detailed drainage design to be undertaken once conditional planning approval has been granted.
- 4.16 This Sustainable Drainage Strategy is fully in line with current Local and National Policy and there are no drainage related grounds on which to object to the proposed development.

SITE LOCATION




ENVIRONMENT AGENCY FLOOD MAP

PROPOSED DEVELOPMENT LAYOUT

IMPERMEABLE AREA PLAN

INDICATIVE DRAINAGE LAYOUT

	North Arrow		
		N	
		W <	⇒E
	-	v S	
	× ×		
			ing Private Road/ Parking Areas
		 Surface Water Drainage Surface Water Drainage 	e from Roof Areas e from Adoptable Highway
			ay Dishcharging to Infiltration Basin
			er (Depth <0.6m [1 side connection]) er (Depth <1.2m [2 side connections]
	. ——————	Storm BR manhole PCC	
	~		
EP			
	REV DATE	DESCRIPTION/REAS	ON FOR ISSUE APP
		ENGINE	
		MTC Engineering (Ca Ground Floor, 24 Whittlesford, Cambridg	High Street
		Fel (01223) 837270, fa: E-mail <u>office@mtcen</u>	x (01223) 835648
	TITLE		
	CO	DATES ROAL	D, COATES
		CAMBRIDG	ESHIRE
	INDIC	ATIVE DRAI	INAGE LAYOUT
	ORIG	DATE	
		(:	19 01 2017
	S.E.		19.04.2017
		SCALE	19.04.2017 1:500@A1
	S.E.	SCALE	1:500@A1
	S.E.		1:500@A1

MICRO DRAIANGE CALCULATIONS: PERMEABLE PAVING SYSTEM

MTC Engineering 1	uτα						Page 1
24 High Street			Coates R	load			
Whittlesford			Coates,				4
CB22 4LT			Permeabl	e pavin	a		~
Date 19.04.2017			Designed		<u> </u>		MICLO
File 1889- atten	ation src	v	Checked				Draina
Micro Drainage			Source C		2015 1		
ficto brainage			bource c	.0110101	2013.1		
Summa	ary of Resu	ults f	or 100 ye	ear Retu	rn Per:	iod (+40%)
	Ha	alf Dra	in Time :	221 minut	es.		
	Storm	Max	Max	Max	Max	Status	
	Event		Depth Inf:				
		(m)	(m)	(l/s)	(m³)		
1!	5 min Summer	4.377	0.227	14.3	193.9	Flood Risł	2
30) min Summer	4.440	0.290	14.3	247.7	Flood Risł	2
) min Summer					Flood Ris	
) min Summer					Flood Risk	
) min Summer					Flood Rish	
) min Summer) min Summer					Flood Risk Flood Risk	
) min Summer) min Summer					Flood Rish	
) min Summer					Flood Rish	
) min Summer					Flood Rish	
) min Summer					Flood Risł	
1440) min Summer	4.322	0.172	14.3	147.3	Flood Risł	2
2160) min Summer	4.252	0.102	14.3	86.9	O F	ζ
2880) min Summer	4.211	0.061	14.3	52.3	O F	C
) min Summer			11.6		O H	ζ
) min Summer			9.3		O F	
) min Summer			7.8		O H	
) min Summer) min Summer			6.6 5.9	19.9 17.5	O H O H	
	5 min Winter					Flood Risł	
	St	orm	Rain	Flooded	Time-Pe	ak	
		orm ent	Rain (mm/hr)		Time-Pe (mins)		
	Ev	ent		Volume	(mins)		
	Ev 15 mi	ent	(mm/hr) er 136.090	Volume (m³)	(mins))	
	Ev 15 mi 30 mi 60 mi	ent in Summe in Summe	(mm/hr) er 136.090 er 87.658 er 53.779	Volume (m ³) 0.0	(mins)	18 33 62	
	Ev 15 mi 30 mi 60 mi 120 mi	ent in Summo in Summo in Summo in Summo	(mm/hr) er 136.090 er 87.658 er 53.779 er 31.948	Volume (m ³) 0.0 0.0 0.0 0.0	(mins) 1	18 33 62 20	
	Ev 15 mi 30 mi 60 mi 120 mi 180 mi	ent in Summo in Summo in Summo in Summo	(mm/hr) er 136.090 er 87.658 er 53.779 er 31.948 er 23.295	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	(mins) 1 1	18 33 62 20 72	
	Ev 15 mi 30 mi 120 mi 180 mi 240 mi	ent in Summa in Summa in Summa in Summa in Summa	(mm/hr) er 136.090 er 87.658 er 53.779 er 31.948 er 23.295 er 18.534	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 1 1 2	18 33 62 20 72 00	
	Ev 15 mi 30 mi 120 mi 180 mi 240 mi 360 mi	ent in Summo in Summo in Summo in Summo in Summo in Summo	(mm/hr) er 136.090 er 87.658 er 53.779 er 31.948 er 23.295 er 18.534 er 13.343	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 1 2 2	18 33 62 20 72 00 60	
	Ev 15 mi 30 mi 120 mi 180 mi 240 mi 360 mi	ent in Summa in Summa in Summa in Summa in Summa in Summa in Summa	(mm/hr) er 136.090 er 87.658 er 53.779 er 31.948 er 23.295 er 18.534 er 13.343 er 10.542	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 1 2 2 3	18 33 62 20 72 00 60 28	
	Ev 15 mi 30 mi 120 mi 180 mi 240 mi 360 mi 480 mi	ent in Summa in Summa in Summa in Summa in Summa in Summa in Summa	(mm/hr) er 136.090 er 87.658 er 53.779 er 31.948 er 23.295 er 18.534 er 13.343 er 10.542 er 8.788	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(mins) 1 2 2 3 3 3	18 33 62 20 72 00 60 28 94	
	Ev 15 mi 30 mi 60 mi 120 mi 180 mi 360 mi 480 mi 600 mi 720 mi	ent in Summo in Summo in Summo in Summo in Summo in Summo in Summo in Summo	(mm/hr) er 136.090 er 87.658 er 53.779 er 31.948 er 23.295 er 18.534 er 13.343 er 10.542 er 8.788 er 7.571	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 1 1 2 2 3 3 4	18 33 62 20 72 00 60 28 94 62	
	Ev 15 mi 30 mi 60 mi 120 mi 180 mi 360 mi 480 mi 600 mi 720 mi 960 mi	ent in Summo in Summo in Summo in Summo in Summo in Summo in Summo in Summo	(mm/hr) er 136.090 er 87.658 er 53.779 er 31.948 er 23.295 er 18.534 er 13.343 er 10.542 er 8.788 er 7.571 er 5.981	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 1 1 2 2 3 3 4 5	18 33 62 20 72 00 60 28 94 62 96	
	Ev 15 mi 30 mi 60 mi 120 mi 180 mi 240 mi 360 mi 480 mi 600 mi 720 mi 960 mi	ent in Summo in Summo in Summo in Summo in Summo in Summo in Summo in Summo in Summo	(mm/hr) er 136.090 er 87.658 er 53.779 er 31.948 er 23.295 er 18.534 er 13.343 er 10.542 er 8.788 er 7.571 er 5.981 er 4.284	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 1 1 2 2 3 3 4 5 8	18 33 62 20 72 00 60 28 94 62 96 48	
	Ev 15 mi 30 mi 60 mi 120 mi 180 mi 240 mi 360 mi 480 mi 600 mi 720 mi 960 mi 1440 mi	ent in Summo in Summo in Summo in Summo in Summo in Summo in Summo in Summo in Summo in Summo	(mm/hr) er 136.090 er 87.658 er 53.779 er 31.948 er 23.295 er 18.534 er 13.343 er 10.542 er 8.788 er 7.571 er 5.981 er 4.284 er 3.065	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 1 1 2 2 3 3 4 5 8 11	18 33 62 20 72 00 60 28 94 62 96 48 88	
	Ev 15 mi 30 mi 60 mi 120 mi 180 mi 240 mi 360 mi 480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi	ent in Summo in Summo in Summo in Summo in Summo in Summo in Summo in Summo in Summo	(mm/hr) er 136.090 er 87.658 er 53.779 er 31.948 er 23.295 er 18.534 er 13.343 er 10.542 er 8.788 er 7.571 er 5.981 er 4.284 er 3.065 er 2.415	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 1 1 2 2 3 3 4 5 8	18 33 62 20 72 00 60 28 94 62 96 48 88 04	
	Ev 15 mi 30 mi 60 mi 120 mi 180 mi 240 mi 360 mi 480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi 2880 mi 4320 mi	ent in Summo in Summo	(mm/hr) er 136.090 er 87.658 er 53.779 er 31.948 er 23.295 er 18.534 er 13.343 er 10.542 er 8.788 er 7.571 er 5.981 er 4.284 er 3.065 er 2.415 er 1.724	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 1 1 2 2 3 3 4 5 8 11 15	18 33 62 20 72 00 60 28 94 62 96 48 88 04 04	
	Ev 15 mi 30 mi 60 mi 120 mi 180 mi 240 mi 360 mi 480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi 2880 mi 4320 mi	ent in Summo in Summo	(mm/hr) er 136.090 er 87.658 er 53.779 er 31.948 er 23.295 er 18.534 er 13.343 er 10.542 er 8.788 er 7.571 er 5.981 er 4.284 er 3.065 er 2.415 er 1.724 er 1.357	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 1 1 2 2 3 3 4 5 8 11 15 22	18 33 62 20 72 00 60 28 94 62 96 48 88 04 04 36	
	Ev 15 mi 30 mi 60 mi 120 mi 180 mi 240 mi 360 mi 480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi 2880 mi 4320 mi 5760 mi	ent in Summo in Summo	(mm/hr) er 136.090 er 87.658 er 53.779 er 31.948 er 23.295 er 18.534 er 13.343 er 10.542 er 8.788 er 7.571 er 5.981 er 4.284 er 3.065 er 2.415 er 1.724 er 1.357 er 1.126	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 1 1 2 2 3 3 4 5 8 11 15 22 29	18 33 62 20 72 00 60 28 94 62 96 48 88 04 04 36 72	
	Ev 15 mi 30 mi 60 mi 120 mi 180 mi 240 mi 360 mi 480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi 2880 mi 4320 mi 5760 mi	ent in Summo in Summo	(mm/hr) er 136.090 er 87.658 er 53.779 er 31.948 er 23.295 er 18.534 er 13.343 er 10.542 er 8.788 er 7.571 er 5.981 er 4.284 er 3.065 er 2.415 er 1.724 er 1.357 er 1.126 er 0.967	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(mins) 1 1 2 2 2 3 3 4 5 8 11 15 22 29 36 44	18 33 62 20 72 00 60 28 94 62 96 48 88 04 04 36 72	

MTC Engineering L	td						Page 2
24 High Street			Coates R	oad			
Whittlesford		Coates,				4	
CB22 4LT			Permeabl	e pavino	я		
Date 19.04.2017			Designed				MICrO
File 1889- attenu	ation area		-	-			Draina
	acton, SrCX		Checked				
Micro Drainage			Source C	ontrol 2	2012.1		
30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	ry of Resu Storm Event min Winter min Winter	Max Level 1 (m) 4.479 4.539 4.577 4.581 4.571 4.542 4.512 4.482 4.482 4.482 4.451 4.394 4.297 4.207 4.207 4.192 4.180	Max Depth Infi (m) 0.329 0.389 0.427 0.431 0.421 0.392 0.362 0.362 0.332 0.301 0.244 0.147 0.057 0.042 0.030	Max (ltration (l/s) 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3	Max Volume (m ³) 280.9 332.6 365.3 368.5 360.2 335.5 309.6 283.5 257.7 208.5 125.4 48.9 35.9 25.7	Statu Flood R Flood R Flood R Flood R Flood R Flood R Flood R Flood R	ls Risk Risk Risk Risk Risk Risk Risk Ris
5760	min Winter	4.174	0.024	6.8	20.1		ОК
	min Winter			5.6			ОК
	min Winter min Winter			4.8 4.2			0 K 0 K
	Sto Eve			Flooded Volume (m³)	Time-Pe (mins)		
			ee			~ ~	
		n Winte n Winte	er 87.658 er 53.779			32 62	
		n Winte				62 18	
		n Winte				74	
	240 IIIII	n Winte	r 18.534	0.0	2	26	
		n Winte n Winte				26 80	
	360 mii 480 mii	n Winte n Winte	er 13.343 er 10.542		2		
	360 min 480 min 600 min	n Winte n Winte n Winte	er 13.343 er 10.542 er 8.788	0.0 0.0 0.0	2 3 4	80 56 30	
	360 min 480 min 600 min 720 min	h Winte h Winte h Winte h Winte	er 13.343 er 10.542 er 8.788 er 7.571	0.0 0.0 0.0 0.0	2 3 4 5	80 56 30 04	
	360 min 480 min 600 min 720 min 960 min	h Winte h Winte h Winte h Winte h Winte	er 13.343 er 10.542 er 8.788 er 7.571 er 5.981	0.0 0.0 0.0 0.0 0.0	2 3 4 5 6	80 56 30 04 42	
	360 mi 480 mi 600 mi 720 mi 960 mi 1440 mi	h Winte h Winte h Winte h Winte h Winte h Winte	er 13.343 er 10.542 er 8.788 er 7.571 er 5.981 er 4.284	0.0 0.0 0.0 0.0 0.0 0.0	2 3 4 5 6 8	80 56 30 04 42 92	
	360 mi 480 mi 600 mi 720 mi 960 mi 1440 mi 2160 mi	h Winte h Winte h Winte h Winte h Winte h Winte h Winte	er 13.343 er 10.542 er 8.788 er 7.571 er 5.981 er 4.284 er 3.065	0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 3 4 5 6 8 11	80 56 30 04 42 92 68	
	360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min	h Winte h Winte h Winte h Winte h Winte h Winte h Winte h Winte	er 13.343 er 10.542 er 8.788 er 7.571 er 5.981 er 4.284 er 3.065 er 2.415	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 3 4 5 6 8 11 14	80 56 30 04 42 92 68 88	
	360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min	h Winte h Winte h Winte h Winte h Winte h Winte h Winte h Winte h Winte	er 13.343 er 10.542 er 8.788 er 7.571 er 5.981 er 4.284 er 3.065 er 2.415 er 1.724	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 3 4 5 6 8 11 14 22	80 56 30 04 42 92 68 88 00	
	360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min	h Winte h Winte h Winte h Winte h Winte h Winte h Winte h Winte h Winte h Winte	er 13.343 er 10.542 er 8.788 er 7.571 er 5.981 er 4.284 er 3.065 er 2.415 er 1.724 er 1.357	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 3 4 5 6 8 11 14 22 28	80 56 30 04 42 92 68 88 00 88	
	360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min	h Winte h Winte h Winte h Winte h Winte h Winte h Winte h Winte h Winte h Winte	r 13.343 r 10.542 r 8.788 r 7.571 r 5.981 r 4.284 r 3.065 r 2.415 r 1.724 r 1.357 r 1.126	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 3 4 5 6 8 11 14 22 28	80 56 30 04 42 92 68 88 88 00 88 56	
	360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min	h Winte h Winte	r 13.343 r 10.542 r 8.788 r 7.571 r 5.981 r 4.284 r 3.065 r 2.415 r 1.724 r 1.357 r 1.126 r 0.967	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 3 4 5 6 8 11 14 22 28 36	80 56 30 04 42 92 68 88 00 88 56 08	
	360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	h Winte h Winte	r 13.343 r 10.542 r 8.788 r 7.571 r 5.981 r 4.284 r 3.065 r 2.415 r 1.724 r 1.357 r 1.126 r 0.967	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 3 4 5 6 8 11 14 22 28 36 44	80 56 30 04 42 92 68 88 00 88 56 08	
	360 min 480 min 600 min 720 min 1440 min 2160 min 2880 min 4320 min 7200 min 8640 min 10080 min	h Winte h Winte	r 13.343 r 10.542 r 8.788 r 7.571 r 5.981 r 4.284 r 3.065 r 2.415 r 1.724 r 1.357 r 1.126 r 0.967	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 3 4 5 6 8 11 14 22 28 36 44 50	80 56 30 04 42 92 68 88 00 88 56 08	

MTC Engineering Ltd		Page 3
24 High Street	Coates Road	
Whittlesford	Coates,	L.
CB22 4LT	Permeable paving	Micco
Date 19.04.2017	Designed by SEC	Desinado
File 1889- attenuation.srcx	Checked by	Diamaye
Micro Drainage	Source Control 2015.1	

Rainfall Details

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	19.000	Shortest Storm (mins) 15
Ratio R	0.450	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +40

Time Area Diagram

Total Area (ha) 0.857

Time (mins) Area From: To: (ha)

0 4 0.857

MTC Engineering Ltd		Page 4
24 High Street	Coates Road	
Whittlesford	Coates,	L.
CB22 4LT	Permeable paving	Micco
Date 19.04.2017	Designed by SEC	
File 1889- attenuation.srcx	Checked by	Diamaye
Micro Drainage	Source Control 2015.1	

Model Details

Storage is Online Cover Level (m) 4.600

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.03600	Width (m)	10.0
Membrane Percolation (mm/hr)	1000	Length (m)	285.0
Max Percolation (l/s)	791.7	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	4.150	Cap Volume Depth (m)	0.000

MICRO DRAINAGE CALCULATIONS: INFILTRATION BASIN SYSTEM

MTC Engineering	Ltd						Page 1
24 High Street		(COATES F	COAD, COAT	res		
Whittlesford		I	HIGHWAY				4
CB22 4LT		-	INFILTRA	TION BASI	EN		- A
Date 20/04/2017	11:36		Designed				- MICLO
File 1889- INFI			Checked	-			Drainac
Micro Drainage				ontrol 20)15 1		-
nicio Diainage		k		201101 20			
Sumr	mary of Resul Hal			ear Return		d (+40%)	<u>-</u>
	Storm	Max	Max	Max	Max	Status	
	Event			nfiltration		Blacus	
		(m)	(m)	(1/s)	(m ³)		
	15 min Summer			3.1		OK	
	30 min Summer 60 min Summer			3.3			
	120 min Summer			3.4			
	180 min Summer			3.6		0 K	
	240 min Summer			3.7			
	360 min Summer			3.7			
	480 min Summer			3.7		ОК	
	600 min Summer	4.044	0.444	3.6	246.3	ОК	
	720 min Summer	4.037	0.437	3.6	241.8	ОК	
	960 min Summer	4.022	0.422	3.6	232.9	ОК	
	1440 min Summer	3.993	0.393	3.5	215.6	ОК	
	2160 min Summer	3.954	0.354	3.4	192.1	ОК	
	2880 min Summer	3.918	0.318	3.3	171.1	ОК	
	4320 min Summer	3.855	0.255	3.1	135.4	ΟK	
	5760 min Summer	3.802	0.202	3.0	106.1	ΟK	
	7200 min Summer			2.9			
	8640 min Summer			2.8			
1	0080 min Summer 15 min Winter			2.7	48.5 147.2		
						-	
	Stor	m	Rain	Flooded T	ime-Peak		
	Ever	it	(mm/hr)	Volume	(mins)		
				(m³)			
	15	C.,	- 126 000	0 0	1.0		
		Summer	r 136.090 r 87.658		19 34		
		Summer			34 64		
	120 min				122		
	180 min				182		
	240 min				242		
	360 min				360		
	480 min				480		
	600 min				534		
	720 min	Summer			590		
	960 min	Summer	r 5.981	0.0	712		
	1440 min	Summer	r 4.284	0.0	982		
	2160 min	Summer	r 3.065	0.0	1388		
	2880 min	Summer	r 2.415	0.0	1792		
	4320 min	Summer	r 1.724	0.0	2592		
	5760 min	Summer	r 1.357	0.0	3344		
	7200 min				4040		
				0 0	1750		
	8640 min				4752		
	10080 min	Summer		0.0	4752 5440 19		

MTC Engineering	Ltd						Page 2
24 High Street		C	DATES 1	ROAD, COAT	ES		
Whittlesford		H	IGHWAY				4
CB22 4LT		T1	NETT.TP:	ATION BASI	NT		- C
-	11.00						Micro
Date 20/04/2017			-	d by SEC			Drainac
File 1889- INFII	JTRATION BASI		necked				
Micro Drainage		So	ource (Control 20	15.1		
Gum	ary of Result	a for	100	oor Poturn	Dorio	4 (1108)	
Sum	ary or Result	.5 101	100 y	ear keturn	Perio	1 (+40%)	
	Storm	Max	Max	Max	Max	Status	
	Event	Level	Depth I	nfiltration	Volume		
		(m)	(m)	(1/s)	(m³)		
	20 1 11	2 0 4 7	0 245	2.4	100 1	0.77	
	30 min Winter			3.4		ОК	
	60 min Winter			3.6		ОК	
	120 min Winter			3.7			
	180 min Winter			3.8			
	240 min Winter			3.8			
	360 min Winter			3.8			
	480 min Winter			3.8			
	600 min Winter			3.8			
	720 min Winter			3.8			
	960 min Winter			3.7			
	L440 min Winter			3.6			
	2160 min Winter			3.5			
	2880 min Winter			3.4		ОК	
	1320 min Winter			3.1			
	5760 min Winter			2.9			
	7200 min Winter			2.8			
	3640 min Winter 0080 min Winter			2.7	36.3 25.1		
	Storr Event				me-Peak (mins)		
				(m³)			
	30 min	Winter	87.658	3 0.0	33		
	60 min				62		
	120 min				120		
	180 min				180		
	240 min				238		
	360 min				352		
	480 min				462		
	600 min		8.788		570		
	720 min		7.571		670		
	960 min		5.981		754		
	1440 min		4.284		1066		
	2160 min		3.065		1512		
	2880 min				1932		
	4320 min		1.724		2764		
	5760 min		1.35		3512		
	7200 min				4176		
	8640 min				4760		
	10080 min	Winter	0.850	0.0	5144		

MTC Engineering Ltd		Page 3				
24 High Street	COATES ROAD, COATES					
Whittlesford	HIGHWAY	L.				
CB22 4LT	INFILTRATION BASIN	Micco				
Date 20/04/2017 11:36	Date 20/04/2017 11:36 Designed by SEC					
File 1889- INFILTRATION BASI	Checked by	Diamaye				
Micro Drainage	Source Control 2015.1					
Ra	infall Details					
Rainfall Model	FSR Winter Storms	Yes				
Return Period (years)	100 Cv (Summer) 0.	.750				
Region Engla	and and Wales Cv (Winter) 0.	.840				
M5-60 (mm)	19.000 Shortest Storm (mins)	15				
Ratio R	0.450 Longest Storm (mins) 10	080				
Summer Storms	Yes Climate Change %	+40				

Time Area Diagram

Total Area (ha) 0.524

Time (mins) Area From: To: (ha)

0 4 0.524

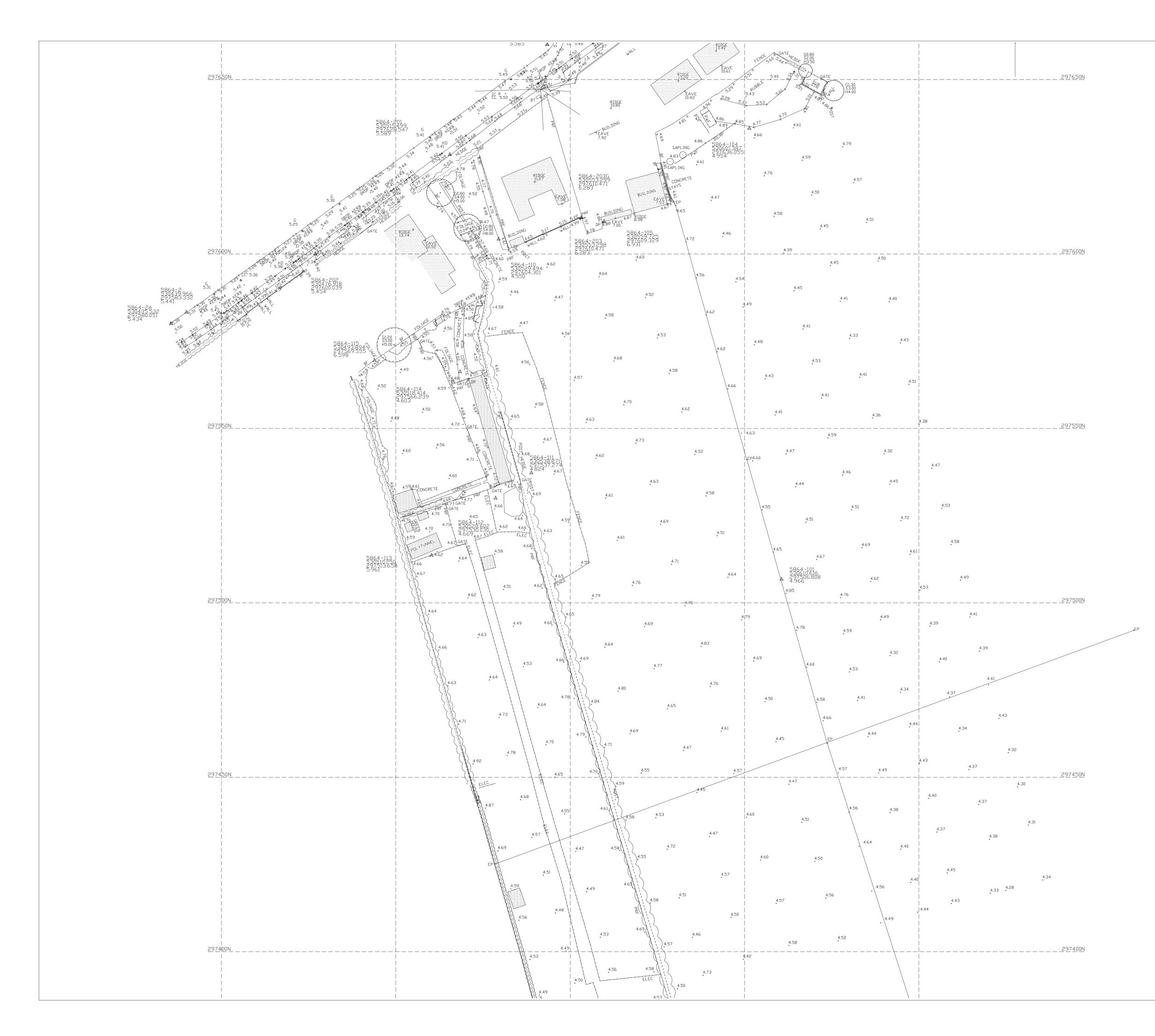
©1982-2015 XP Solutions

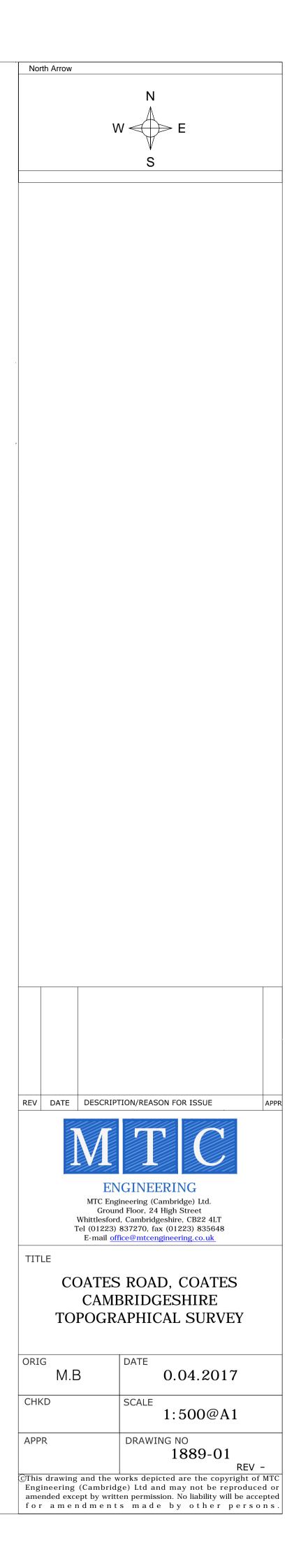
MTC Engineering Ltd		Page 4
24 High Street	COATES ROAD, COATES	
Whittlesford	HIGHWAY	L.
CB22 4LT	INFILTRATION BASIN	Micco
Date 20/04/2017 11:36	Designed by SEC	Desinado
File 1889- INFILTRATION BASI	Checked by	Diamaye
Micro Drainage	Source Control 2015.1	

Model Details

Storage is Online Cover Level (m) 4.600

Infiltration Basin Structure


Invert Level (m) 3.600 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.03600 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.03600


Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)
0	000	_			-	400	~		2	0		1 -		_	4	000	1.0	0 7	_

0.000	500.0	1.400	888.3	2.800	1387.5	4.200	1997.5
0.200	548.7	1.600	952.9	3.000	1467.9	4.400	2093.7
0.400	599.6	1.800	1019.6	3.200	1550.5	4.600	2192.2
0.600	652.9	2.000	1088.7	3.400	1635.4	4.800	2292.9
0.800	708.3	2.200	1160.0	3.600	1722.5	5.000	2395.9
1.000	766.1	2.400	1233.6	3.800	1811.9		
1.200	826.1	2.600	1309.4	4.000	1903.6		

SITE SURVEY

1889-Rev A – FRA - DS May 2017 24

